Learning a Spatiotemporal Dictionary for Magnetic Resonance Fingerprinting with Compressed Sensing
نویسندگان
چکیده
Magnetic resonance fingerprinting (MRF) is a novel technique that allows for the fast and simultaneous quantification of multiple tissue properties, progressing from qualitative images, such as T1or T2-weighted images commonly used in clinical routines, to quantitative parametric maps. MRF consists of two main elements: accelerated pseudorandom acquisitions that create unique signal evolutions over time and the voxel-wise matching of these signals to a dictionary simulated using the Bloch equations. In this study, we propose to increase the performance of MRF by not only considering the simulated temporal signal, but a full spatiotemporal neighborhood for parameter reconstruction. We achieve this goal by first training a dictionary from a set of spatiotemporal image patches and subsequently coupling the trained dictionary with an iterative projection algorithm consistent with the theory of compressed sensing (CS). Using data from BrainWeb, we show that the proposed patch-based reconstruction can accurately recover T1 and T2 maps from highly undersampled k-space measurements, demonstrating the added benefit of using spatiotemporal dictionaries in MRF.
منابع مشابه
Multicompartment Magnetic Resonance Fingerprinting
Magnetic resonance fingerprinting (MRF) is a technique for quantitative estimation of spinrelaxation parameters from magnetic-resonance data. Most current MRF approaches assume that only one tissue is present in each voxel, which neglects the tissue’s microstructure, and may lead to artifacts in the recovered parameter maps at boundaries between tissues. In this work, we propose a multicompartm...
متن کاملMagnetic Resonance Fingerprinting by exploiting Low Rank
Magnetic Resonance Fingerprinting (MRF) is a relatively new approach that provides quantitative MRI measures using randomized acquisition. Extraction of physical quantitative tissue parameters is performed off-line, based on acquisition with varying parameters and a dictionary generated according to the Bloch equations. MRF uses hundreds of radio frequency (RF) excitation pulses for acquisition...
متن کاملAccelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کاملAccelerated parameter mapping with compressed sensing: an alternative to MR fingerprinting
We introduce a method for MR parameter mapping based on three concepts: 1) an inversion recovery, variable flip angle acquisition strategy designed for speed, signal, and contrast; 2) a compressed sensing reconstruction which exploits spatiotemporal correlations through low rank regularization; and 3) a model-based optimization to simultaneously estimate proton density, T1, and T2 values from t...
متن کامل3D Magnetic Resonance Fingerprinting with a Clustered Spatiotemporal Dictionary
We present a method for creating a spatiotemporal dictionary for magnetic resonance fingerprinting (MRF). Our technique is based on the clustering of multi-parametric spatial kernels from training data and the posterior simulation of a temporal fingerprint for each voxel in every cluster. We show that the parametric maps estimated with a clustered dictionary agree with maps estimated with a ful...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015